
TDA Progress Report 42-97

N89-27888

January-March 1989

Software Package for Performing Experiments About

the Convolutionally Encoded Voyager 1 Link

U. Cheng

Communications Systems Research Section

A software package enabfing engineers to conduct experiments to determine the actual

performance of long constraint-length convolutional codes over the Voyager 1 communi-

cation link directly from JPL has been developed. Using this software, engineers are able

to enter test data from the Laboratory in Pasadena, California. The software encodes the

data and then sends the encoded data to a personal computer (PC) at the Goldstone Deep

Space Complex (GDSC) over telephone lines. The encoded data are sent to the trans-

mitter by the PC at GDSC. The received data, after being echoed back by Voyager 1, are

first sent to the PC at GDSC, and then are sent back to the PC at the Laboratory over

telephone lines for decoding and further analysis. All of these operations are full), inte-

grated and are completely automatic. Engineers can control the entire software system

from the Laboratory. The software encoder and the hardware decoder interface were

developed for other applications, and have been modified appropriately for integration

into the system so that their existence is transparent_t_o_, he users. This software provides

(1) data entry facilities, (2) communication protocol for telephone links, {3) data display-

ing facilities, (4) integration with the software encoder and the hardware decoder, and

(5) control functions.

I. Introduction

For several years, a goal of TDA Advanced Systems has

been to find a convolutional code which, when concatenated

with an appropriate outer Reed-Solomon code, would perform

2 dB better than the concatenated code currently used by the

Voyager spacecraft [1]. When such a code was found, an

"experiment" was planned: data would be encoded, trans-

mitted to a spacecraft (e.g., Voyager 1) on a ranging channel,

recovered at Goldstone, and decoded. Because the Galileo

mission adopted a coding experiment with a code similar to

this 2-dB code [2], [3], the original experiment is now un-

likely to be performed. The software package developed for

the experiment may have another use, and hence it is pre-

sented here.

The software and hardware configuration is illustrated in

Fig. 1. The software package comprises two programs, both

running on IBM personal computers (PCs) or compatibles. The

first program is run by the engineers at the Laboratory; it is

referred to as Program I in this article. The second program,

175

which runs on a PC at the Goldstone Deep Space Complex
(GDSC), is the gateway to the transceiver; it is referred to here

as Program II. The software package has eight features:

(1) menu-driven user interface

(2) data entry facilities

(3) interface to the software convolutional encoder

(4) interface to the hardware convolutional decoder

(5) stop-and-wait protocol for the telephone link with

variable packet size and error detection

(6) split-screen display for the transmitted and returned
data

(7) command coding with error-correction and error-

detection capabilities for software operational control
(see the subsequent discussion), and

(8) dedicated coding protection for the carriage-return
byte

Program II has three operational modes: command, receiving,

and transmitting. Program II always recognizes the "enter the

command mode" command regardless of the current opera-

tional mode. For instance, by issuing this command, Program I

can interrupt Program II to obtain control during the trans-

mission of the returned data. Program I always puts Program II

in the command mode before issuing any further commands.

In the command mode, Program II is able to accept other

commands from Program I, such as (1) enter the receiving
mode, (2) enter the transmitting mode, or (3) clear all buffers.

In this manner, the users of Program I can always control

Program II remotely. In the receiving mode, Program II receives

the encoded data from Program I. In the transmitting mode,

Program II sends the returned data to Program I.

The software encoder and the hardware decoder interface

were developed by Charles Lahmeyer of the Communications

Systems Research Section for other applications. They have
been modified appropriately for integration into the system.

During transmission, the data entered by the users are first
converted into a bit stream which is saved in a file. The soft-

ware encoder is then invoked to encode the data. During

reception, Program I converts the received data into a bit
stream which is saved in a file. The decoder interface software
is then invoked to decode the data.

The command coding for software operational control is

explained in Section II. The stop-and-wait protocol is explained

in Section III. The coding protection for the carriage-return

byte is described in Section IV.

II. Command Coding

Coding for every operational command is necessary because

of the noisy telephone link. Since the data are sent by bytes

through the asynchronous telephone link, which has a low
byte error rate, the command coding should be designed in

bytes (i.e., a 256-symbol alphabet). Let a command code con-

sisting of N bytes be denoted byA__= (a I ,a 2 , aN). The
detection of this command code is done by straight correla-

tion. Let r],r 2, r3, .,., denote the received bytes and let

N()D(1) = i_I= 1 - W(ai,r/+i)

where l¢(x,y) is the Hamming distance between two bytes,

i.e., l¢(x,y) = 0 ifx =y, and I¢(x,y) = 1 ifx _:y. Then if

D(/') > 6, one declares that A has been detected at the jth re-

ceived symbol; otherwise, the symbol stream starting at the

next received symbol will be tested. The threshold 8 is prede-
termined based on the error rate of the asynchronous tele-
phone link.

In this software package, five command codes are provided
to trigger the following actions, namely:

(1) enter the command mode

(2) enter the receiving mode

(3) enter the transmitting mode

(4) clear the operational buffer, and

(5) acknowledge command acceptance

The same acknowledgment code is also used in the stop.and-
wait protocol for acknowledging acceptance of the most

recently transmitted data packet. The first four command

codes are referred to as the active command codes. They can

only be issued by Program I. The acknowledgment code is a

passive command code. It is issued by either program upon
acceptance of a data packet or a command code. In order to

allow Program I to maintain control of Program II even in

noisy situations, an active command code must be repeated

until an acknowledgment is received from Program II.

III. Stop-and-Wait Protocol

The stop-and-wait protocol is used for both the forward

(JPL to GDSC) and the return (GDSC to JPL) telephone links

to control the byte error rate. The probability of undetected

errors over the telephone links must be made very low com-

pared to the error rate of the Voyager 1 link. Low byte error

rate can be accomplished through the addition of an adequate

176

number of parity-check bytes. In the current design, every

data packet is protected by five parity-check bytes. These

parity-check bytes are generated as follows:

(1) one byte derived by the overall bytewise exclusive-OR

operation, and

(2) four bytes derived by the overall long-integer sum [4]

Each packet can be of any size up to 100 bytes. The first two

bytes of each packet are the packet length. Two bytes are
reserved for packet length out of consideration for software

expandability. This allows the software to be usable should

packets of length greater than 256 bytes be handled in the

future. Each packet is transmitted repeatedly until an ac-
knowledgment is received. On the receiving side, an acknowl-

edgment is sent if a packet is received correctly.

The data transmission session is started by Program I using
one of two commands: "enter the receiving mode" or "enter

the transmitting mode." The session is terminated by Program I
using the "enter the command mode" command. During data

transmission, the programs display the number of packets

transmitted, the number of packets received, and the length of

the current packet. Program I attempts to collect the returned

data from Program II whenever possible. For instance, when

users are looking at the menu or examining the returned data,

Program I will put Program II in the transmitting mode auto-

matically in order to obtain as much returned data as possible.
This strategy maximizes the link utilization and minimizes the

waiting time for the users.

the transmitted and the received text more difficult. There-

fore, it is worth protecting this character by coding. The

codeword must be designed so that when Program I searches
for it in the data bit stream, the probability of detecting it is

high but that of false alarm is low. The data bit stream has a
bit error rate ranging from 10 -5 to 0.2 (typical of the convo-

lutionally encoded Voyager 1 link). The command coding

concept described in Section II can be applied here. In this

case, however, the codeword should be over binary alphabets
and bitwise correlation should be performed:

D(j) = i_ l'= - W(ci,bi+ i)

where b 1, b2, b3 are the received bits, C = (e I , c 2

CM) is the carriage-return codeword, and W(x,y) is the Hamm-
ing distance between two bits, i.e., I_(x,y) = 0 ifx = y, and

W(x,y) = 1 ifx _y. Then if D(j) > _l, one declares thatC
has been detected at the /'th received bit; otherwise, the bit

stream starting at the next received bit will be tested. The

threshold is predetermined based on the bit error rate.

When Program I is transmitting, it examines each byte prior

to transmission. If a carriage-return byte is encountered, the

carriage-return codeword is sent instead. When Program I is

receiving, it examines the received bit stream constantly to

detect the carriage-return codeword. If this codeword is found,
it is removed from the data and a carriage-return byte is

inserted at that position.

IV. Coding Protection for the Carriage-
Return Byte

An important feature of this software package is to let users

send plain-English text. Users can easily compare the trans-
mitted text with the returned text. Errors which are not cor-

rected by the convolutional decoder will be obvious to them.

In displaying the plain-English text, there is a control char-

acter of particular importance, the carriage-return character.

This character tells when a new line begins. If the carriage-

return character is received in error, the received text will have

a disturbed format that makes the visual comparison between

V. Conclusion

The software described in this article enables engineers to

conduct experiments to determine the actual performance of

long constraint-length convolutional codes over the Voyager 1
communication link from the Laboratory. The concept behind

this software should also be useful for other applications. Its

control features allows engineers to conduct off-lab experi-

ments from the Laboratory. The implemented protocol guar-
antees nearly error.free transmission of data from the remote

sites to the Laboratory over standard telephone lines. High-

speed modems can be used if a great amount of data must be
transferred.

177

References

[1] J. H. Yuen and Q. D. Vo, "In Search ofa 2-dB Coding Gain," TDA Progress Report

42-83, vol. July-September 1985, Jet Propulsion Laboratory, Pasadena, California,

pp. 26-33, November 15, 1985.

[2] S. Dolinar, "A New Code for Galileo," TDA Progress Report 42-93, vol. January-

March 1988, Jet Propulsion Laboratory, Pasadena, California, pp. 83-96, May 15,
1988.

[3] S. Arnold and F. Pollara, "A Software Simulation Study of the Long Constraint

Length VLSI Viterbi Decoder," TDA Progress Report 42-94, vol. April-June 1988,

Jet Propulsion Laboratory, Pasadena, California, pp. 210-221, August 15, 1988.

[4] Microsoft C Language Reference Manual, Microsoft Corpora tion, Bothell, Washington,
1987.

178

I PC AT t
JPL

LAYERED SOFTWARE STRUCTURE

STOP-AND WAIT PROTOCOL

INTERFACE TO ENCODER
INTERFACE TO DECODER

CODING FOR CARRIAGE-RETURN

DATA ENTRY FACILITIES
SPLIT-SCREEN DISPLAY
MENU DRIVEN USER INTERFACE

TELEPHONE LINK PC AT
GDSC

LAYERED SOFTWARE STRUCTURE

STOP AND-WAfT PROTOCOL

STATUS REPORT

Fig. 1. Software and hardware configuration.

TO/FROM VOYAGER 1]

TRANSCEIVER t_

179

